Effect of Electrical Stimulation on Chronic Leg Ulcer Size and Appearance

Pamela E Houghton, Cynthia B Kincaid, Marge Lovell, Karen E Campbell, David H Keast, M Gail Woodbury and Kenneth A Harris

PE Houghton, BScPT, PhD, is Associate Professor, School of Physical Therapy, University of Western Ontario, Room 1443, London, Ontario, Canada N6G 1H1 (phoughto@uwo.ca)
CB Kincaid, PT, MEd, is Associate Director for Clinical Education and Clinical Associate Professor, Department of Physical Therapy, University of Michigan-Flint, Flint, Mich
M Lovell, RN, is Clinical Research Nurse, Vascular Service, Victoria Campus, London Health Science Centre, London, Ontario, Canada
KE Campbell, NP/CNS, RN, MScN, is Clinical Nurse Specialist, Wound Care, Parkwood Hospital, St Joseph’s Health Care London, and Family Physician, London, Ontario, Canada
DH Keast, MD, FCFP, is Medical Director, Interdisciplinary Wound Management Clinic, Parkwood Hospital, St Joseph’s Health Care London, and Family Physician, London, Ontario, Canada
MG Woodbury, BScPT, PhD, is Epidemiologist, Research Department, Parkwood Hospital, St Joseph's Health Care London, and Adjunct Professor, Department of Biostatistics and Epidemiology, University of Western Ontario
KA Harris, MD, FRCS, FACS, is Vascular Surgeon, Victoria Campus, London Health Sciences Centre, London, Ontario, Canada, and Chair, Department of Surgery, Faculty of Medicine, University of Western Ontario

Address all correspondence to Dr Houghton

Background and Purpose. Electrical current has been recommended for use on chronic pressure ulcers; however, the ability of this modality to improve healing of other types of chronic ulcers is less well established. The purpose of this study was to examine the effect of high-voltage pulsed current (HVPC) on healing of chronic leg ulcers.

Subjects. Twenty-seven people with 42 chronic leg ulcers participated in the study.

Methods. The subjects were separated into subgroups according to primary etiology of the wound (diabetes, arterial insufficiency, venous insufficiency) and then randomly assigned to receive either HVPC (100 microseconds, 150 V, 100 Hz) or a sham treatment for 45 minutes, 3 times weekly, for 4 weeks. Wound surface area and wound appearance assessed during an initial examination, following a 1- to 2-week period during which subjects received only conventional wound therapy, after 4 weeks of sham or HVPC treatment, and at 1 month following treatments.

Results. The results indicated that HVPC applied to chronic leg ulcers reduced the wound surface area over the 4-week treatment period to approximately one half the initial wound size (mean decrease=44.3%, SD=8.8%, range=2.8%-100%), which was over 2 times greater than that observed in wounds treated with sham units (mean decrease=16.0%, SD=8.9%, range=-30.3%-83.7%).

Discussion and Conclusion. The results of the study indicate that HVPC administered 3 times a week should be considered to accelerate wound closure of chronic leg ulcers.